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ABSTRACT
The turbulent environment from which stars form may lead to misalignment between
the stellar spin and the remnant protoplanetary disk. By using hydrodynamic and
magnetohydrodynamic simulations, we demonstrate that a wide range of stellar
obliquities may be produced as a by-product of forming a star within a turbulent
environment. We present a simple semi-analytic model that reveals this connection
between the turbulent motions and the orientation of a star and its disk. Our results
are consistent with the observed obliquity distribution of hot Jupiters. Migration of
misaligned hot Jupiters may, therefore, be due to tidal dissipation in the disk, rather
than tidal dissipation of the star-planet interaction.

Key words: protoplanetary discs — accretion, accretion discs — stars: formation
— planets and satellites: formation — stars: rotation

1 INTRODUCTION

The observed orbital properties of hot Jupiters provide
powerful diagnostics of the formation and evolution of
planetary systems. The observation that the orbits of some
hot Jupiters are misaligned with the spins of their host
stars (Winn et al. 2009) has the potential of casting light
on the formation of protoplanetary disks (e.g., Bate et al.
2010), on magnetic interactions between these disks and
their host young stellar objects (e.g., Lai et al. 2011), on
dynamical interactions between the hot Jupiters and other
massive planets or a binary companion in the systems (e.g.,
Nagasawa et al. 2008), and on tidal interactions between
the hot Jupiters and their host stars (e.g., Rogers & Lin
2013). An issue of particular importance is, how did the hot
Jupiters get so close to their host stars? Under the plausible
hypothesis that hot Jupiters are born at large orbital peri-
ods, their close-in orbits require a change in orbital energy,
or migration, spanning several orders of magnitude. Classic
disk-migration theory (Goldreich & Tremaine 1980; Lin &
Papaloizou 1979; also cf. Julian & Toomre 1966) anticipated
that tidal interactions between the protoplanetary disk and
planet could lead to inward migration. However, under the
assumption that the stellar spin and angular momentum of
the protoplanetary disk are aligned, recent observations of
spin-orbit misalignment (e.g. Winn et al. 2009, 2010) seem

to indicate that disk-migration is not responsible for the
observed orbits of hot Jupiters.

Tidal dissipation from the star-planet interaction is
another potential source of orbital energy loss that leads to
inward migration. Given the presence of a distant third body
that weakly torques the planet in question, secular changes
in orbital angular momentum can lead to close periastron
passages—and high eccentricities—where tidal dissipation
is activated. Calculations of this process, which we refer to
as high-e migration (HEM), seemed to demonstrate that if
the relative strength of tidal dissipation is comparable to
the inferred value of the Jupiter-Io interaction (Goldreich &
Soter 1966) then a Jovian analogue could migrate from a
period of ∼ 5 yrs to 5 days in ∼ a Gyr (Wu & Murray 2003;
Fabrycky & Tremaine 2007; Wu & Lithwick 2011; Naoz et al.
2011). Most impressively, spin-orbit misalignment in hot
Jupiters was a prediction of HEM (Fabrycky & Tremaine
2007), and it may be able to account for the formation of
all hot Jupiters (Naoz et al. 2013; Li et al. 2014). Also, note
that HEM need not always result in spin-orbit misalignment
(Petrovich 2014).

Recently, the plausibility of HEM has been put in
question. Socrates et al. (2012b); Socrates & Katz (2012)
have shown that previous calculations of HEM inadvertently
over-estimated the strength of tidal dissipation by a few
orders of magnitude. Furthermore, Socrates et al. (2012a)
proposed the following test: if HEM is responsible for pro-
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ducing hot Jupiters, there should be a population of super-
eccentric migrating Jupiters in the Kepler sample. However,
a statistical analysis of the Kepler gas giant candidates
indicates that such a population is missing (Dawson et al.
2012, 2015).

In this work, we re-examine the possibility that disk-
migration is responsible for forming misaligned hot Jupiters
by questioning the assumption that the angular momentum
of a protoplanetary disk is initially aligned with that of its
host star. On the basis of observations, it is now accepted
that star forming regions are turbulent (McKee & Ostriker
2007) and therefore, it is not necessary to assume alignment
between stellar spin and angular momentum of the remnant
disk.

Our model of spin-disk misalignment is quite similar
to that put forth by Bate et al. (2010), although we focus
our attention on the outer disk, which contains most of the
angular momentum, whereas they restricted their analysis to
the inner disk. We find that spin-disk misalignment may be
more common than deduced by those authors. We describe
the difference between our work and that of Bate et al.
(2010) in §4.1.

The presence of an external body force has been inves-
tigated as a means to change the orientation of an initially
aligned protoplanetary disk. In particular, Tremaine (1991)
suggested that non-axisymmetric collapse of a molecular
cloud core could result in spin-disk misalignment. Lai et al.
(2011) raised the possibility that magnetic torques origi-
nating from the protostar dictate the disk orientation of
the inner-disk, while Batygin & Adams (2013) consider
gravitational torques resulting from the presence of close-
by stellar companion. Additionally, Terquem (2013) showed
that planets that form in a warped disk can be substantially
misaligned.

In what follows, we describe hydrodynamic and mag-
netohydrodynamic simulations that support a turbulence
induced spin-disk misalignment scenario consisting of the
following ingredients: i) turbulent interstellar material grav-
itationally collapses toward a common center of gravity,
initially forming a disk, ii) as the disk is replenished by the
collapsing fluid, its orientation changes, since the converging
flow is sourced by a chaotic flow. These simulations produce
a distribution of spin-disk misalignments that is consistent
with the observed distribution of spin-orbit misalignments.
Therefore, this scenario may be underlying the observed hot
Jupiter spin-orbit misalignments if their migration is due to
tidal dissipation in the disk, instead of in the star-planet
interaction.

The plan of this paper is as follows: in §2, we outline
our numerical technique. We describe our results in §3, and a
discussion of our results and approach, along with a spherical
toy model for spin-disk misalignment, are discussed in §4,
and we conclude with §5.

2 SIMULATIONS

We perform two simulations of star formation in a turbulent
molecular cloud clump. The simulations were performed
using a grid-based adaptive mesh refinement magnetohy-
drodynamic code, orion (Klein 1999; Li et al. 2012). The
initial physical properties of the two simulations were iden-

tical except for the inclusion of magnetic fields. The non-
magnetized simulation will be referred to as the hd run, and
the magnetized simulation will be referred to as the mhd run.
The finest resolution of the hd run was ∆xf = 10AU, which
corresponds to 5 levels of mesh refinement, and the finest
resolution of the mhd run was ∆xf = 2.5AU, which corre-
sponds to 7 levels of mesh refinement. The finer resolution in
the mhd run was needed to avoid the so-called “magnetic-
braking catastrophe” in which torsional Alfvén waves are
so effective in transporting away angular momentum that
disk formation is prevented (Allen et al. 2003). Although
the exact mechanism responsible for enabling the formation
of protostellar disks in the presence of magnetic fields has
not been conclusively proven, the necessity for finer reso-
lution to form disks in magnetohydrodynamic simulations
as compared to equivalent hydrodynamic simulations is well
established (e.g. Seifried et al. 2012; Myers et al. 2013).

To generate turbulent velocity and density initial con-
ditions we adopt the approach used by many groups (e.g.
Klessen et al. 2000; Offner et al. 2009), in which we divide
our simulations into two phases: a driving phase, and a
collapse phase. The driving phase is calculated separately,
during which the turbulent initial conditions are generated
in the absence of gravity. In the collapse phase the turbu-
lence is no longer driven and self-gravity is enabled, thus
leading to star and disk formation.

2.1 Numerical Methods

Both the mhd and hd runs were performed in domains with
periodic boundary conditions and sides of length L = 81920
AU = 0.397 pc. They have an isothermal equation of state
with temperature of T = 10 K, and, prior to driving, have
a uniform density of ρ = 1.632 × 10−19 g cm−3, which
corresponds to a surface density of Σ = 0.2 g cm−2. The
gravitational free-fall time for the box as a whole is tff ≈
1.65×105 years. The total mass contained in the cloud is 150
M�. The parameters used are consistent with observations
of infrared dark cloud cores (Butler & Tan 2012) and small
massive star forming cores (Mueller et al. 2002).

Additionally, the mhd run had an initially uniform
magnetic field oriented in the ẑ direction with a field
strength of B◦ = 0.054 mG. This value was chosen so
that the dimensionless mass-to-flux ratio µΦ—the ratio of
the mass of a cloud to the maximum mass that can be
supported against gravitational collapse by the magnetic
field—was 6, which is somewhat larger than the observed
norm, 〈µΦ〉obs ∼2 (Crutcher 2012), and is large enough that
the field does not hinder disk formation (e.g., Joos et al.
2012; Li et al. 2013).

The driving phase was run using a uniform grid with
5123 cells. The driving pattern was a perturbation cube
generated in Fourier space. Power was only injected on large
scales—equally balanced between wave numbers satisfying
1 6 kL/2π 6 2. The driving pattern was chosen to have a
2:1 balance of the solenoidal (divergence-free) velocity com-
ponent to the compressive (curl-free) velocity component
(Federrath et al. 2010). The turbulence was driven for two
crossing times, which allowed the density power spectrum
to develop self-consistently.

The turbulence was driven so that vrms had a sonic
Mach number M of 7.5. This velocity was chosen so that
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200 AU

Figure 1. An example of one of the disks that formed in the mhd run viewed edge-on (left), at an intermediate angle (center) and

face-on (right). Each image is density projection, 800 AU on a side. The dashed line indicates the direction of the stellar spin axis, and
its length is the scaled according to the projection of the image. The small yellow dot in the center of each image shows the location of

the star particle. The yellow dot is roughly the size of the accretion zone, which for this simulation is 10 AU.

the kinetic energy and gravitational energy in the box as
a whole were approximately balanced, which is reflected in
the order unity virial parameter (Bertoldi & McKee 1992),

αvir =
5σ2

v L

2GM
=

5M2c2s
6GΣL

= 1.04. (1)

When self-gravity was turned on, the base-grid was
reduced from 5123 to 2563 cells and the adaptive mesh re-
finement was enabled. The reduction of base-grid resolution
did not wash out the intricate structures that developed
during driving because the mesh was allowed to refine to the
first level when neighboring cells had large density, velocity,
or magnetic field gradients. The mesh was also allowed to
refine down to the finest level (level 5 for hd runs and level
7 for mhd runs) if the density exceeded half of the Truelove-
Jeans density on that level.

orion represents stars as sink particles (Krumholz et al.
2004) by modeling their evolution (Li et al. 2012; Myers
et al. 2013; Lee et al. 2014; and refs therein), and, therefore,
will be referred to as star particles. Star particles are created
when the density exceeded the Truelove-Jeans density on the
finest level, where the appropriate Truelove-Jeans density for
a magnetized fluid is defined (Myers et al. 2013):

ρTJ =
π c2sJ

2

G(∆x`)2

(
1 +

0.74

β

)
. (2)

Here β is the ratio of thermal pressure to magnetic pressure
(β =∞ in the hd run, so the second term on the right hand
side goes away), and ∆x` is the spatial resolution of the level
being considered. Throughout this work we use J = 1/4.
This guarantees that the Jeans length is resolved by at least
eight cells for refinement and four cells for sink creation,
which has been shown to be sufficient to avoid artificial
fragmentation (Truelove et al. 1997; Lee et al. 2014).

2.2 Treatment of Angular Momentum

For the problem at hand we implemented a new way to
keep track of the angular momentum accreted onto the
star particles throughout the simulations, which represents
the only departure from the orion code. Below we briefly
describe the treatment of star particle angular momentum.
A detailed description of this new method and of the tests
performed to verify its accuracy can be found in Appendix
A.

The physics governing protostellar angular momentum
evolution takes place on a spatial scale smaller (. R?) than
is feasible to probe while still following the dynamics of the
turbulence in a parsec-scale cloud. Consequently, we use
a sub-grid model to approximate the angular momentum
transport from the outer edge of the accretion zone to the
surface of the star. In reality, on these sub-grid scales angular
momentum transport always ensures the specific angular
momentum never exceeds the Keplerian value, so we scale
the accreted specific angular momentum to the Keplerian
value at the surface of the star. The specific angular momen-
tum of a Keplerian orbit increases proportional to R1/2. The
outer edge of the accretion zone is at R = 4∆x. Therefore
our sub-grid model reduces the magnitude of the accreted
angular momentum by

lout, acc

l?Kep
=

√
4∆x

R?
, (3)

which is roughly a factor of 23 for the mhd run and 46 for
the hd run, assuming a fiducial value of 4 R� for R?.

In reality most of the angular momentum that goes
into the sink regions should viscously spread back out into
the surrounding medium along with a small fraction of the
mass. Because our sub-grid model does not account for this
it raises the question: how would the results change if less
angular momentum was discarded? The amount of angular
momentum that is discarded is proportional to (∆xf )1/2

where ∆xf is the finest resolution of the simulation. There-
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Figure 2. The evolution of the stellar obliquity over time for the

representative system from the hd run that we focused our zoom-
in convergence study on. The resolution is increased incrementally

by a factor of 2,4, and 8 around this star particle and the

agreement of the obliquity over time demonstrates that our spin-
disk misalignment results are converged. Note this is the same

system that is discussed in Section 4.2.

fore, we were able to address this concern by running a
series of three “zoom-in” simulations with progressively
higher resolution, and demonstrating that our results are
sufficiently converged.

The zoom-ins were focused on one star particle from the
hd run (the same star particle that is used to demonstrate
our toy model in Section 4.2) and each had one additional
level of mesh refinement. The maximum spatial resolution
of the zoom-ins were ∆xf = 5, 2.5, and 1.25 AU, which
means the amount of discarded angular momentum was
decreased by a factor of 21/2, 2, and 81/2 respectively relative
to the hd run. Of the total angular momentum accreted by
the targeted star particle in the 10 AU hd run ∼ 80 per
cent entered the accretion zone, ∼ 2 per cent was accreted
onto the star particle and the remaining ∼ 78 per cent
was discarded. We conjecture that the remaining ∼ 20 per
cent was transmitted to the outer part of the disk and
transferred to the ambient medium. In the highest resolution
zoom-in only ∼ 28 per cent of the total angular momentum
entered the accretion zone, the sub-grid model again ensured
∼ 2 per cent was accreted onto the star particle while the
remaining∼ 26 per cent was discarded. In this case, we again
conjecture that the remainder of the angular momentum
(∼ 72 per cent) was transmitted to the outer disk and then
to the ambient medium. This conjecture is supported by the
agreement of the spin-disk misalignment at all resolutions
considered as shown in 2.

The first zoom-in was started roughly 6000 years after
the star particle formed, the second zoom-in was started
1700 years after the first, and the third was started 1500
years after the second. The temporal spacing was necessary
to allow the gas to adjust after the resolution changes.

To account for the well known non-convergence of sim-
ulations of self-gravitating isothermal gas (e.g. Kratter et al.
2010; Krumholz 2014), we adopted a barotropic equation of
state in the zoom-in simulations. The change in the equation
of state prevented disk fragmentation and kept the disks

Table 1. Star Formation Properties of the Simulations

Name tf/tff M?,f N?,f N?,w/disk εff

mhd 0.87 1.22 5 2 0.03

hd 0.89 19.5 21 12 0.29

Col. 2: the final simulation time divided by the free-fall time. Col

3.: the total mass in stars at end of the simulation measured in

M�. Col. 4: number of stars formed with mass above 0.05 M�.
Col 5: number of stars with disks. Col 6: The dimensionless star

formation rate (Krumholz & McKee 2005).

thickness approximately the same. Specifically, we used

P = ρc2s

[
1 +

(
ρ

ρad

)2/3
]
, (4)

where ρad is the critical density, above which the gas
becomes adiabatic. We set ρad = 2 × 10−13 g cm−3. We
also checked that using this equation of state on the hd run
with 10 AU resolution made no difference, which was to be
expected because ρad is ∼ 4 times larger than the Truelove-
Jeans density at this resolution.

The obliquity of the system is the primary quantity we
are interested in. Figure 2 shows the obliquity over time,
and the agreement between the zoom-ins and the hd run
is encouraging. The sub-grid model ensures that the star
particle accretes the same angular momentum regardless of
resolution, so the agreement between the zoom-in simula-
tions indicates that our disks orientations are sufficiently
converged. Had we run the highest resolution zoom-ins
longer the disparity may have grown, however the fact that
all the simulations show the same increase in obliquity at
around 104 years after formation demonstrates that roughly
the same behavior of a system should be expected regardless
of resolution.

Note that the disk mass and stellar mass do not con-
verge. At higher resolution the disk mass is higher and stellar
mass is lower, although the total masses of the systems are
the same. This is because by increasing the resolution gas
that would have been counted as being in the star is now
resolved as being in the disk.

Our sub-grid model also depends on the exact value of
the break-up rotation rate of a star, and thus the appropriate
magnitude for the cap. We verify that our results do not
depend sensitively on the value of the cap we use in
Appendix A.

3 RESULTS

In the hd run, 12 of the 21 star particles had disks,
which made them suitable for analysis. Those that were
not included in the analysis either formed just prior to the
simulations end, or had no disk due to fragmentation or
stellar encounters in dense regions. In the mhd run 2 of the
5 star particles had disks suitable for study—an example
from the mhd run is shown in figure 1. Those omitted either
formed too late, or had no disk due to angular momentum
loss from magnetic braking.

This sample of 14 star-disk systems enabled us to
determine the effect of accretion from the turbulent inter-
stellar medium (ISM) on spin-disk alignment. Note that
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Turbulence Induced Spin-Orbit Misalignment 5

with our simulations we did not use the full capability of
orion (radiative feedback, protostellar outflows, etc.) as was
recently done by Myers et al. (2014) since we wished to
isolate the effects of turbulent accretion on misalignment.
Table 1 lists some of the properties of the simulations. As
expected the hd run was more efficient at converting gas
into stars than the mhd run.

In our simulations we needed a consistent and rigorous
way to identify real, rotationally-supported disks. To do so
we adopted a set of five criteria to define the outer boundary
of the disk, which are similar to those used by Joos et al.
(2012). The criteria are applied separately to concentric
rings of material that fall between R and R + ∆R, where
∆R is set to the resolution of the given simulation. A disk’s
radius Rd is defined to be the largest radii where all smaller
rings meet the criteria. The criteria that are applied to the
rings are:

(i) In a Keplerian disk rotational velocity is much larger
than the radial velocity, so to be considered part of the disk
the ring’s average rotational velocity needed to exceed its
average radial velocity by a constant factor: vφ > fthreshvr.

(ii) A Keplerian disk should be close to hydrostatic equi-
librium, so we demand that the ring’s average rotational
velocity exceed the average magnitude of its vertical velocity
by a constant factor: vφ > fthresh|vz|.

(iii) To ensure the disks are rotationally supported we
require that rotational energy density in a ring exceeds
the thermal pressure by a constant factor: ρv2

φ/2 >
fthreshPtherm.

(iv) The disk should be mostly continuous, so a visual
inspection is done to ensure connectivity of the rings, which
ensures that distinct parcels of gas are not included in the
disk.

(v) We also enforce a density criterion of ρ > 2× 10−15 g
cm−3 to be consistent with Joos et al. (2012), and which
prevents over estimates of the radius by excluding large
spiral arms and accretion streams.

We adopt the same constant factor, fthresh = 2, for the first
three criteria for simplicity, although in principle they could
be different.

When star-disk systems accrete varying amounts of
angular momentum, first the disk, then the star, adjusts.
The rate of change of the stars’ and disks’ angular momenta
vectors are inversely proportional to their masses. Since a
star’s mass can only increase as the system ages the star
will change direction increasingly sluggishly. Alternatively,
a disk’s mass can fluctuate, so at different times it may be
able to rapidly change orientation. In several systems the
obliquity goes through multiple cycles of alignment and mis-
alignment as the star catches up with the disk and then falls
behind again. Figure 3 shows the distribution of obliquities
of the 14 star particles with disks when the simulations were
halted. It is clear that spin-disk misalignment is expected
during formation.

The final obliquity in our simulations is not any more
physically meaningful than the obliquity at earlier times
because the simulations were stopped arbitrarily. In reality
a star’s obliquity at the end of the embedded phase would be
set by when the cloud disperses to the point where accretion
onto the system has mostly stopped. Because we did not
include any feedback processes accretion would not have
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Figure 3. The distribution of final spin-disk misalignments as

measured by the stellar obliquity ψ. The obliquity of the 12
star particles from the hd run are differentiated from the 2 star

particles from the mhd run with a darker shade of grey.
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Figure 4. The distribution of all spin-disk misalignments as
measured by the stellar obliquity. The obliquity of the 12 stars

from the hd run and 2 stars from the mhd run are sampled at
intervals of td if they have a disk. This is to account for the fact

that the simulations are ended arbitrarily and accretion has not

stopped on its own due to the dispersal of the cloud.

stopped until all the gas was in star particles. Therefore, to
sample the obliquity distribution in a more representative
manner, in figure 4 we treat measurements of ψ at equally
spaced time intervals as distinct. For the time interval we
use the average disk accretion timescale—the time for the
host star to have accreted as much mass as was contained
in the disk—that is defined:

td = 1500

( 〈Md〉
0.015M�

)(
10−5M� yr−1

〈Ṁ?〉

)
yr. (5)

Where the scaling normalizations are the mean values from
both of the simulations—〈Md〉 = 0.015M� and 〈Ṁ?〉 =
10−5M� yr−1. This further demonstrates the general result
that spin-disk misalignment is the norm at this phase in
stellar evolution.

Figure 5 shows the relationship between star particle
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Figure 5. The distribution of stellar obliquity relative to disk

mass when the simulations were halted. The obliquity of the
12 star particles from the hd run are differentiated from the 2

star particles from the mhd run with a darker shade of grey. The

points with a black circle around them correspond to systems that
formed in isolation, and never had another star particle within

4000 AU.

obliquity and disk mass in our simulations at the final time,
and the points with circles around them formed in isolation,
never having another star particle within 4000 AU. This
shows that even systems with massive disks and those that
had no encounters can be significantly misaligned. Figure 6
also shows the distribution of obliquity relative to disk mass,
but sampled throughout the simulations at intervals of td,
as in figure 4. Also shown are the mean obliquity values
in 5 bins, as well as the best-fit linear relationship, and
the mean value. It is apparent that there is a weak disk
mass dependence, although the data are equally consistent
with no disk mass dependence. Figure 7 shows distribution
of obliquities relative to stellar mass, along with the mean
obliquity values in 7 bins, the best-fit linear relationship,
and the mean of all values. As with the disk mass there
may be a weak dependence of the obliquity on the stellar
mass, but the data is equally consistent with there being no
dependence.

Note that because simulations of self-gravitating
isothermal gas do not numerically converge in regard to
spatial resolution (Krumholz 2014), a direct convergence
test between star-disk systems in two simulations that
differ only in resolution was not possible. Nonetheless, we
verified that similar spin-disk misalignment was present in
our simulations when we increased or decreased the spatial
resolution and when we performed the zoom-in simulations
discussed in Section 2.2.

4 DISCUSSION

4.1 Comparison to past work

Although the physical mechanism we are proposing for spin-
disk misalignment is similar to what Bate et al. (2010) put
forth, the approach of our studies differ. We consider the
alignment of the outer disk relative to the stellar spin, while
Bate et al. (2010) considered the alignment of inner disk

0.00 0.05 0.10 0.15 0.20

Mdisk [M⊙]

0
20
40
60
80
100
120
140
160

ψ
[◦
]

Mean

Best fit

Binned

Figure 6. The distribution of stellar obliquity relative to disk

mass measured at intervals of td as in figure 4. The light grey
points are from the mhd run and the darker grey points are from

the hd run. The red points show the mean in values in 5 bins.

The error bars indicate the standard deviation within each bin.
The blue dashed line shows the best fit linear relation, and the

green dash-dot line shows the mean of all values. Both lines are

equally consistent with the data.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

M⋆ [M⊙]

0
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80
100
120
140
160

ψ
[◦
]

Mean

Best fit

Binned

Figure 7. The same as fig. 6 except the obliquity is shown relative

to the stellar mass. Again the best-fit line and the mean value are
equally compatible with the data.

relative to the stellar spin. The difference in our focuses is
reflected in our sub-grid models.

To target the inner disk Bate et al. (2010) used a
sub-grid model that viscously evolved the material that
was accreted onto their sink particle. Importantly, their
model allowed mass and angular momentum to flow outward
beyond the sink radius. Unfortunately, it wasn’t feasible to
introduce material back into the computational domain once
it had been removed, so any gas that spread beyond the sink
radius in the sub-grid model could not interact with the
rest of the simulation. The authors avoided this difficultly
as best as possible by limiting their analysis to a single low
mass (0.2 M�) sink particle that specifically did not have
a disk without the post-processing. This necessary selection
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Figure 8. The spherical model’s predictions for the star particles’ (top row), their disks’ (middle row) angular momenta direction, and
the spin-disk misalignment ψ (bottom row) are compared to the results from the simulations. The left and right column are for the

star particle from the hd1 and mhd1 run respectively. The solid lines show the results from the simulation and evolve as a function of

star particle mass. The dashed lines are the spherical model’s predictions that change with enclosed mass. The direction of the angular
momentum in the top two rows is represented by the polar (θ in black) and azimuthal (φ in teal/gray) angle in the grid frame.

restricted their sample size to a single accretion history that
was used for the source term in three variants of their sub-
grid model (regular viscosity, high viscosity, and regular
viscosity plus disk truncation from stellar encounters). As
a result, they did not attempt to predict the distribution
of obliquities. Nonetheless, they were able to demonstrate
that strong spin-disk misalignment is possible and that it
is more likely when the disk is low mass and/or has been
disturbed by a stellar flyby. A caveat to their results is that
the misaligned disks in their simulations may not be massive
enough to form planets; the high viscosity model resulted
in ψ = 21.3◦ and Md = 3 × 10−5M� = 2.5 × 10−4M?,
the regular viscosity with stellar encounters model resulted
in ψ = 122◦ and Md = 2.2 × 10−4M� = 2.1 × 10−3M?,
while the regular viscosity model without stellar encounters
resulted in ψ = 4.2◦ and Md = 3.4× 10−2M� = 0.3M?.

We focus on the outer disks where most of the accretion
happens and where most of the angular momentum resides.
Our sub-grid model should return similar stellar angular
momentum as that of Bate et al. (2010), however it does
not allow the accreted angular momentum that does not
end up on the star to the spread back outside the accretion
zone. The benefit of our model is that we are not restricted
to studying sink particles that have no disk around them,
so we can study systems with large disks and resolve the

interaction of the disk with surrounding medium. However,
this comes at the cost of no longer conserving angular
momentum. The amount of discarded angular momentum
decreases with resolution, so the convergence study we
discussed in Section 2.2 supports our conviction that our
model is sufficiently realistic in the context used here. With
our different sub-grid model and larger sample size we find
that spin-disk misalignment may be more common than
deduced by Bate et al. (2010), although our studies are
broadly consistent.

4.2 Simple physical model

To better understand the physical origin of the spin-disk
misalignment present in our results, we introduce a simple
spherical model, and apply it to our simulation data, thus
giving a quantitative demonstration of the connection be-
tween turbulence in the ISM and spin-disk misalignment.
The fundamental aspect of the physical mechanism is that
within a realistic turbulent molecular cloud the angular
momentum vector of a protostellar core varies with radius.
These variations have been shown to result in time-varying
protostellar disk orientations (Smith et al. 2011). We directly
link these radial variations in protostellar core angular
momenta to changes in star and disk angular momenta,
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thus demonstrating the connection between turbulence in
the ISM and spin-disk misalignment.

The spherical model we now introduce maps the
changes in a core’s angular momentum direction with
radius—or enclosed mass—to the evolution of the star par-
ticle’s and its disk’s angular momentum. The basic idea of
this model is that a star’s angular momentum is proportional
to the integrated angular momentum of all the gas that it
accretes. On the other hand, a disk is constantly gaining and
losing angular momentum. Therefore, the angular momen-
tum of the disk is taken to be proportional to that of the
recently accreted material.

In other words, let Ld(t) be the disk’s angular momen-
tum at time some time t, and Ld(t+td) be the disk’s angular
momentum at time t + td, where td = Md/Ṁ? is the time
for the disk to have replaced all of its mass. Then

Ld(t+ td) = Ld(t) + ∆Lacc + ∆Lext, (6)

where ∆Lacc is the angular momentum of the gas accreted in
the time td, and ∆Lext is the angular momentum transferred
to external matter that time. ∆Lext can have contributions
from three channels: i) torquing inhomogeneities in the
ambient medium, ii) viscous transfer of angular momentum
to matter outside the disk, or iii) torques by magnetic fields.
We take Ld ≈ ∆Lacc, which is equivalent to the statement
that recently accreted angular momentum dominates. This
is the essence of how accretion from a turbulent medium
leads to changes in disk orientation and is the basis of our
spherical model.

With that in mind, and under the assumption that stars
form through gravitational collapse (e.g. Krumholz et al.
2005), consider a sphere of mass Menc = M?, with a shell of
mass Mshell = Md surrounding it, centered on where a star
is about to form. The angular momentum of the star when
it reaches a mass M? will be proportional to the sphere’s
angular momentum. Moreover, if the star has a disk around
it that has mass Md, then its angular momentum will be
proportional to the shell’s angular momentum.

L?(M?) ∝ Lsphere(Menc = M?) (7)

Ld(Md) ∝ Lshell(Mshell = Md) (8)

We investigated the ability of this spherical model to
predict the angular momentum direction of a star particle
and its disk by applying it to a representative star particle
from the hd run and the mhd run. Figure 8 shows our
model’s prediction for the angular momentum direction of
the two exemplar star particles (top panels), for their disks
(middle panels), and for the resultant spin-disk misalign-
ment (bottom panels), compared to values obtained in the
simulations. By the time these star particles formed the tur-
bulent velocities decayed somewhat. During their formation
the Mach number of the whole domain was betweenM = 5.7
and 5.1. The model, as simple as it is, does exceedingly well
for the hd case and moderately well for the mhd case.

The fact that this simple model can predict the results
of the simulations, which followed the small scale details
of the gas dynamics, is a testament to the validity of the
physical interpretation. For the system from the hd run the
model’s predictions were off by an average of 5◦, 8◦, and 7◦

for the hd star particle’s angular momentum, its disk’s angu-
lar momentum, and for its obliquity respectively. At the final
time these discrepancies were 4◦, 14◦, and 12◦. In the mhd
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Figure 9. The spherical model’s prediction for the radius of
the disk around the example hd (top) and mhd (bottom).

The spherical model does not account for angular momentum

transport by magnetic field lines, which accounts for why the
prediction in the mhd run is very inaccurate.

case, the model’s predictions was off by an average of 29◦,
40◦, and 23◦ for the star particle’s angular momentum, its
disk’s angular momentum, and for its obliquity respectively.
At the final time these discrepancies were 15◦, 41◦, and 8◦.
The model is more accurate in the absence of magnetic fields,
which is to be expected because magnetic fields transport
angular momentum, which increases the strength of the
∆Lext term. The decrease in accuracy when magnetic fields
are included does not indicate a diminished accuracy of the
physical interpretation. In fact, because magnetic fields link
the disk to the more turbulent large scale cloud the effect of
turbulence on spin-disk misalignment can be enhanced.

We can extend this model one step further and use
it to predict not only the orientation of the star and disk
but also the disk radius. The magnitude of a disk’s angular
momentum can be written

Ld = kMdRd vKep = kMd

√
GM?Rd, (9)

where k is a dimensionless constant that depends on the
structure of the disk and is not known a priori. The disk
radius is therefore

Rd =
L2
d

k2M2
dGM?

. (10)
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Our model assumes that at any given time Ld ∝ ∆Lacc.
By taking the stronger assumption that Ld ≈ ∆Lacc we can
predict Rd. For the value of k we use the average value of the
two disks from each simulation. The disk in the hd run had
an average k = 0.83 with a dispersion of 0.03, and the disk
in the mhd run had an average k = 0.73 with a dispersion
of 0.05. The results of this exercise are shown in figure 9
relative to the measured disk radii.

The manner in which the disk radii predictions are
wrong are indicative of the relative importance of the other
contributions to the disk angular momentum besides what
was most recently accreted. Our assumption that Ld(t +
td) ≈ ∆Lacc is equivalent to ∆Lacc � Ld(t) + ∆Lext. In
the hd case, our model only slightly under predicts the
disk radius. For the mhd system, our model drastically over
predicts the disk radius. This is a result of magnetic braking
stripping angular momentum from the disk and allowing the
disk to contract, which is beyond the scope of our simple
model.

Our simple model clearly demonstrates the hydrody-
namic effect of turbulence on spin-disk misalignment. More-
over, this model indicates that the presence of magnetic
fields does not hinder this effect and may in fact enhance
it. We have demonstrated that not only is the stellar birth
environment’s angular momentum imparted to the system
as it forms, but that its turbulent motion, which causes
variations in the direction of the angular momentum in the
natal core, results in the formation of misaligned star-disk
systems.

4.3 Stellar Quadrupole

A caveat to our results comes from the fact that the young
stars we consider are likely to be spinning rapidly, and
therefore will have a significant gravitational quadrupole
moment. The quadrupole of a rotating star will experience
a torque from its disk, resulting in the precession of the
star. This additional coupling of the star and disk can limit
spin-disk misalignment if the stellar precession timescale,
tp?, is much shorter than the disk reorientation timescale,
trd (Lai 2014; Spalding et al. 2014). Below we present an
approximate expression for the stellar precession frequency,
and then using a simple post-processing modification to the
stellar spin-axis evolution we demonstrate how the obliquity
of an example star particle changes given different precession
rates.

Unfortunately, the stellar precession timescale is un-
certain because it depends strongly on quantities—such as
the stellar rotation rate and inner disk radius—that are
poorly known for the early stages of protostellar evolution.
Although the pertinent physical properties may not be
tightly constrained, the interaction between the disk and
stellar quadrupole is straightforward. We work under the
common assumption that the disk is rigid and flat, which
is appropriate because of the efficient communication by
bending waves and viscous stresses (e.g., Papaloizou &
Pringle 1983; Foucart & Lai 2014) that is also enhanced
by self-gravity (e.g., Tremaine & Davis 2014). The torque
from the disk onto the stellar quadrupole is (Lai 2014)

T =

∫
dMd

3

2

kqGM?R
2
?

r3

Ω2
?

Ω2
b

(
L̂d × L̂?

)
cosψ, (11)

where Ωb = (GM∗/R
3
∗)1/2 is the breakup rotation frequency

and kq is the dimensionless quadrupole moment of the star
defined such that I3 − I1 = kqM?R

2
?(Ω?/Ωb)2. Following the

lead of Lai (2014), if we assume that the surface density of
the disk satisfies Σ ∝ R−1 and that L? � Ld, then we find

T =
1

tp?
L̂d × L?, (12)

where

tp? = 6.0× 104 yr

(
P?

3 days

)(
R?

2R�

)−1(
Md/M?

0.01

)−1

×
(
Rin

4R?

)2(
Rout

100AU

)(
k?
2kq

)
1

cosψ
,

(13)

and where Rin and Rout are the inner and outer edges of
the disk, respectively, P? is the rotation period of the star,
and k? is the dimensionless moment of inertia of the star
defined so that L? = k?M?R

2
?Ω?.

1 For an n = 3/2 polytrope,
kq ≈ k?/2 (Lai 2014). We have normalized the protostellar
radius to 2R� based on the results of Hosokawa et al. (2011),
who found if accretion is cold then R? . 2R� for a wide
range of stellar accretion histories and rates. Hot accretion
may cause the protostellar radius to be at most a factor of
∼2 larger (Hosokawa et al. 2011; Baraffe et al. 2012).

We can simplify this expression by assuming that the
star co-rotates with the disk at some radius, so that 2π/P? =
f?
√
GM?/R3

in. Long et al. (2005) found that the co-rotation
radius was ∼ 1.4Rin, which implies that f? ≈ 0.6. Thus we
have

tp? =3.6× 104 yr

(
P?

3 days

)7/3(
R?

2R�

)−3(
M?

M�

)2/3

×
(
f?
0.6

)4/3(
Md/M?

0.01

)−1(
Rout

100AU

)(
k?
2kq

)
1

cosψ
.

(14)

The normalization for the stellar rotation period is roughly
10 times the breakup rotation period for a solar mass star
with R = 2R�. Observations of the rotation periods of
Class II and III protostars show significant scatter, often
displaying a clear bimodality between slow and fast rotators
for stars with M > 0.25M� (Lamm 2003). In the Orion
Nebula Cluster and in NGC2264 the fast rotators have
median period of roughly 3 days (Herbst et al. 2007; Affer
et al. 2013). The rotation periods of Class 0 and I protostars,
which are of greater interest to us, are much harder to
constrain. Covey et al. (2005) observed a sample of Class
I and flat-spectrum protostars spectroscopically and found
an average rotational velocity of 38 km s−1 after correcting
for inclination; this corresponds to a rotational period of
2.66(R?/2R�) days. This estimate of the rotational velocity
is based on the assumption that these stars can be seen from
any angle. In fact, they have accretion disks, which block
the equatorial lines of sight with the highest observable ro-
tational velocities, so the actual intrinsic rotational velocity

1 This expression for tp? is equivalent to (within a factor 2π,

which is a matter of definition) what is derived in Spalding
et al. (2014) in the limit where χ/Rin � 1, where χ =

R? (2kqPb/k?P?)2/3 is the radius of a ring that is inertially

equivalent to the rotationally induced bulge on the star.
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Figure 10. Evolution of the spin-disk misalignment angle with
different estimates of the stellar precession timescale relative to

the star particle’s mass. The thick black line with tp? = ∞ is

the case with no effect from the quadrupole. The solid green
line shows the case with a precession timescale equal to our

fiducial estimate. The orange dashed, purple dashed-dotted, and

magenta dashed-double-dotted lines show the same evolution
with a precession timescale ×10−1/2,×10−1,×10−2 our fiducial

estimate, respectively.

is somewhat larger, and the period somewhat shorter, than
this. However, there is no way of knowing how representive
this sample is, so this just provides a specific example of the
uncertainties involved in the stellar precession time scale.
Note that if the period is measured directly, Equation (14)
shows that the precession time is sensitive to the protostellar
radius; however, if the period is measured indirectly by
measuring the rotational velocity, then tp? ∝ R−2/3

? is much
less sensitive to that uncertain quantity.

For comparison we measure the disk reorientation time,

trd =

∣∣∣∣∣dL̂d

dt

∣∣∣∣∣
−1

, (15)

directly in our simulations and find that the average over the
growth of all of the stars is trd = 1.1×104±0.25 yr. Although
in principle this quantity depends on the disk mass and the
accretion rate, in practice variations in trd are predominately
set by the angular momentum accretion history.

Our fiducial estimate implies that tp? ≈ 3trd; however,
it is likely that the timescales may vary significantly, so we
cannot claim to have ruled out the possibility that tp?/trd
may be . 1. To address the fact that at this point in a
system’s evolution the two timescales may be of the same
order, and thus not strictly in a limiting regime where one
timescale is far shorter than the other, we demonstrate,
using a simple post-processing calculation, how the obliquity
evolution of an example star particle is modified given
different tp? values. In the post-processing we assume that
the star’s torque on its disk is negligible since L? � Ld.
Under this assumption all that changes is the evolution of

the stellar angular momentum, which now must include the
torque on its quadrupole. The evolution is given by

dL?
dt

=

(
dL?
dt

)
acc

+

(
1

tp?
L̂d × L?

)
, (16)

where the first term on the right hand side is the angular
momentum that is accreted onto the star, and the second
term is the torque from the disk on the stellar quadrupole.

The system we applied this post-processing to is the
same system from the hd run that we discussed in section
4.2, which has an average trd = 1.7 ± 0.7 × 104 yrs.
The evolution of its obliquity is shown in figure 10 with
various values of tp?. It is clear from this figure that for
our fiducial estimate of tp? the effect of the torque on the
star’s quadrupole is negligible. Nevertheless, the impact of
the quadrupole becomes rapidly important with decreasing
tp? to the point that when tp? . 102 yr, the system stays
nearly aligned throughout its growth.

Given the uncertainty in protostellar rotation rates,
radii, and disk radii, the stellar precession timescale is nec-
essarily very uncertain, and the result of our post-processing
calculation demonstrates the importance of better con-
straining these values both observationally and theoretically.
Spalding et al. (2014) adopted parameters quite different
from ours: They considered the maximally precessing case
in which the star rotates at the breakup rotation rate and
the inner edge of the disk is in contact with the star;
they also adopted a characteristic protostellar radius of
4R�. For these conditions, we too find that tp? � trd
so that the stellar spin remains closely aligned with the
rotation axis of the disk. We have presented evidence for the
values we have adopted above, which lead to the opposite
conclusion. Theoretically, Lin et al. (2011) have argued that
gravitational torques are sufficient to ensure that a protostar
never rotates at more than 1/2 of its breakup rotation rate,
and Shu et al. (1994) have shown that stellar magnetic fields
∼ 1kG (contrary to the MG fields claimed by Spalding et al.
(2014)) are sufficient to truncate the disk before it comes
into contact with the star for protostellar accretion rates
. 10−5M� yr−1.

4.4 Comparison to Observations

To date no observations have been made of the stellar spin
axis in systems as young as those in our simulations, so a di-
rect comparison of our spin-disk misalignment results is not
possible. However, the stellar obliquity has been measured
relative to planetary orbits in more evolved systems in which
the disk has dissipated. Therefore, a comparison between our
spin-disk and the observed spin-orbit misalignments may in-
dicate to what extent the inclination of the planetary orbits
is inherited from the disks that they formed in. This can
then be used to discern the dominant channel of hot Jupiter
migration because in the HEM paradigm the misalignment
is due to post planet formation evolution whereas in the
disk-migration paradigm a planet’s inclination is the same
as that of the disk.

To compare our results for the distribution of stellar
obliquities ψ to what has been observed we must take into
consideration that it is only possible to measure the plane-
of-sky projected spin-orbit misalignment angle λ (note that
some authors use β instead). The relation between ψ and
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λ is simplified by the fact that the methods for measuring
λ require the planet to transit the star so we can assume
that our disks’ angular momenta are in the plane of the
sky. Fabrycky & Winn (2009) showed that in this case the
probability distribution function of λ for a given ψ is

P (λ|ψ) =



2

π

cosψ

cosλ(cos2 λ− cos2 ψ)1/2
,

|λ− π
2
| > |ψ − π

2
|,

0,

|λ− π
2
| < |ψ − π

2
|.

(17)

Approximately one-third of the 68 measurements of
λ in exoplanet systems listed on exoplanets.org have
substantial misalignment with |λ| > 30◦, and ∼ 14 per cent
are retrograde with |λ| > 90◦. After applying equation 17
to our simulations, they predict P (λ > 30◦) = 34 per cent,
in good agreement with the observations. Our simulations
also predict P (λ > 90◦) = 3 per cent, which is significantly
less than the observed value. For this comparison we have
combined the samples from our two simulations, which
are sufficiently similar, into a single sample to improve
the statistics. However this may not be the most salient
comparison to make. It is well established that hot Jupiters
around “hot” stars (Teff & 6250 K) are much more likely
to be misaligned than those around cooler stars, which are
almost always aligned (λ < 30◦) (Schlaufman 2010; Winn
et al. 2010). A possible explanation for this dichotomy is
that dissipation in the stellar convective envelope of the
star–planet tidal interaction, which is more effective in
cooler stars that have larger convective envelopes, has had
enough time to realign the planets around cool stars (e.g.,
Albrecht et al. 2012). In that case, our simulations are
most relatable to the systems which have not undergone
significant dissipation—namely, the hot stars. Figure 11
shows the projected spin-orbit misalignment distribution
from our simulations relative to the observed values from
systems with stellar Teff > 6250 K.

Our simulations were intended to be a proof of concept
for turbulence induced spin-orbit misalignment, so the level
of agreement between our results and observations are only
to be taken as rough indicator. Moreover, this mechanism
sets the initial conditions for all future influences on the
misalignment. One such influence that may alter a system’s
spin-orbit misalignment is the angular momentum transport
by internal gravity waves in massive (hot) stars with con-
vective cores and radiative envelopes (Rogers et al. 2012,
2013). Additionally, interactions with a stellar magnetic field
(Lai et al. 2011), or a binary companion star can drastically
alter the spin-orbit misalignment (Batygin & Adams 2013;
Lai 2014; Crida & Batygin 2014), although observations do
not show a correlation between the presence of a directly
imaged companion and spin-orbit misalignment (Ngo et al.
2015). Therefore by taking the obliquity distribution from
our simulations as initial conditions—instead of assuming all
systems begin aligned—the continued evolution from effects
such as these may introduce the retrograde tail missing from
our distribution as well as possibly improving the fit between
the predicted λ distribution from these mechanisms and
observations.

Although there are many complicating factors in this
very active field of research, the comparison between our
simple model and the observations indicates that a signifi-
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Figure 11. The distribution of observed projected spin-orbit

misalignment angle λ for hot stars (Teff & 6250 K) as listed
on exoplanets.org as of March 2015 is shown in magenta. The

stacked gray histogram shows the predicted distribution of λ

derived from the combination of our simulations. The dark and
light grey portions reflect the fraction in each bin from the hd

and mhd runs respectively.

cant contribution to the observed spin-orbit misalignments
could originate in the disk when it forms. This supports
the possibility that the migration of misaligned hot Jupiters
could be due to tidal dissipation in the disk, rather than
tidal dissipation in the star-planet interaction. And, putting
aside the question of migration, our results demonstrate
that the process of star formation can lead to significant
spin-orbit misalignment by the time planets form, thereby
setting the initial conditions for subsequent evolution of the
misalignment.

5 CONCLUSIONS

Star formation in a turbulent environment may lead to spin-
orbit misalignment. We show this by performing grid-based
simulations of star formation in turbulent molecular clouds
with realistic initial conditions. The stellar angular momen-
tum is approximately parallel to the total angular momen-
tum of the material it accreted, whereas the protoplanetary
disk’s angular momentum at a given time is much more
variable and is determined by the most recently accreted
matter. A simple spherical accretion model is remarkably
successful in predicting the orientation and radius of the disk
in the absence of magnetic fields. Additionally, we verify that
including the effect of the stellar quadrupole does not wipe
out the misalignment at this stage as long as the protostar
rotates considerably slower than the breakup rotation rate.

The results of our simulations are consistent with the
idea that the process of star formation in a turbulent
medium could set the initial conditions for spin-orbit mis-
alignment. This concept of a non-zero initial obliquity,
especially if taken in concert with other mechanisms that
can further modify spin-disk misalignment, may explain the
observed spin-orbit misalignment distribution, particularly
for systems with “hot” stars (Teff,? > 6250 K) that have
likely not undergone significant dissipation and realignment.
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This supports the possibility that a substantial fraction
of misaligned hot Jupiters have undergone disk-migration
in a misaligned disk as opposed to HEM, and that the
initial conditions for the evolution of spin-disk or spin-orbit
misalignment should come from a range of misalignments.

Interaction between the accretion disk and the stellar
quadrupole created by rapid rotation of the protostar will
cause the stellar spin axis to adiabatically trail the disk
axis if the precession period is significantly less than the
disk reorientation time scale (Spalding et al. 2014). The
precession period depends on several quantities that are
not well-determined observationally: the rotational period
of the star, the inner radius of the disk, and the radius of
the protostar. Since planets form at the end of the accretion
phase, these quantities must be determined over the last
disk reorientation time, when the protostar is accreting its
final tens of percent of its mass—i.e., most likely during
the Class I stage. We presented evidence that the rotational
period of protostars in this phase is slow enough for our
mechanism to work, but the sample is not unbiased and
more observations are needed to confirm this.

Our results demonstrate a mechanism for spin-orbit
misalignment in hot Jupiters in isolation i.e., in the absence
of a third body. There are many questions that remain.
How are the statistics of the turbulent flow of the birth
cloud reflected in the angular momentum of the stellar
host and planetary orbits? How does the stellar quadrupole
affect spin-disk misalignment? To what extent do interstellar
magnetic fields affect spin-disk misalignment by commu-
nicating angular momentum between the protoplanetary
disks and turbulent ISM? Why are the orbits of many hot
Jupiters aligned? Is spin-orbit alignment more prevalent in
massive stars or low-mass stars (Dawson 2014)? What shuts
migration off so that the hot Jupiter does not plunge into
the stellar host?
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APPENDIX A: STAR PARTICLE ANGULAR
MOMENTUM

Star particles in orion can accrete angular momentum
in two ways: through gas accretion, and by merging with

another star particle. Krumholz et al. (2004), Cunningham
et al. (2012), and Lee et al. (2014) explain the algorithms
used in orion for gas accretion and particle mergers in
great detail. For the present study we ensure that the
angular momentum accretion is invariant under Galilean
transformations, and that the amount of angular momen-
tum accreted did not exceed simple physically reasonable
limits. Here we describe the newly implemented star particle
angular momentum method followed by a description of the
tests performed to ensure its accuracy and that our results
are insensitive to the cap used to limit the magnitude of
accreted angular momentum.

We start with a description of gas accretion. For our
purposes it suffices to say that gas accretion proceeds by
removing a fraction of the matter in each cell falling within
the accretion zone around each star particle and adding it
to the star particle. The accretion zone is defined to be all
cells within racc = 4∆x, where ∆x is the grid size on the
finest level. Once the amount of mass to be accreted by a
star particle from each cell, maccr,cell, has been determined,
the angular momentum of the matter is calculated relative
to the star particle:

Lacc =
∑

acc,cell

macc,cell

[
(rcell − r?) × (vcell − v?)

]
. (A1)

However, this is not what gets added to the star particle.
Material orbiting a star particle at the outer edge of the
accretion zone has a much higher specific angular momen-
tum than the maximum breakup specific angular momentum
of the star. To avoid from having our star particles rotat-
ing faster than breakup, we use the sub-grid protostellar
model (Krumholz et al. 2004), which evolves—among other
quantities—the stellar radius R?, to set an upper limit on
the magnitude of the accreted angular momentum. We set
the maximum accreted angular momentum to be the angular
momentum the same amount of mass would have if it were
orbiting at the Keplerian velocity at the surface of the star.
Therefore the angular momentum that is accreted to the
star is:

∆L? = min

{
|Lacc| ,MaccR?

√
GM?

R?

}
Lacc

|Lacc|
(A2)

This capping procedure is an upper limit that approximates
the intricate details of the actual angular momentum trans-
port that take place on these scales. In the context of the
work presented in this paper, the star particle accretes the
most angular momentum that is physically reasonable.

Star particles are merged when two star particles come
within rmerge = 8∆x of each other provided the mass of
the less massive particle is no greater than Mmerge,max =
0.05M�. The angular momentum of the merger product is
a combination of the internal angular momenta of the star
particles and their mutual orbital angular momentum. The
orbital contribution is given by

Lorbit = µ (r1 − r2) × (v1 − v2) , (A3)

where µ is the reduced mass.
As in gas accretion case, the angular momentum of the

star particle is capped. The newly merged star particle’s
angular momentum before the cap is

Lprecap = Lorbit + L1 + L2, (A4)
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where L1 and L2 are the internal angular momenta of the
star particles before the merger. If this angular momentum
exceeds the breakup rate then it is scaled down, so that

Lmerge = min {|Lprecap| , Lbreakup} Lprecap

|Lprecap|
. (A5)

In our model, we use Lbreakup =
√
GM3

?R?.

A1 Test Problems

To verify that the above star particle angular momentum
implementation performs as desired we developed two tests.
The tests were designed to individually test the gas accretion
and merger angular momentum algorithms. Specifically,
we ensured that the direction and magnitude of the star
particle angular momentum matched analytic results, that
the results are completely invariant under Galilean transfor-
mations, and that the results did not depend on resolution.
Additionally, we verified that altering the angular momen-
tum cap significantly does not alter our results substantially,
nor change our conclusions. Below we describe the two test
problems, the various conditions under which they were
executed, and the results of the tests.

The gas accretion angular momentum test consisted of
a box with uniform density of ρ = 10−11 g cm−3 rotating
with constant angular momentum about a non-grid axis
with a star particle in the center that has an initial mass
M = 0.5M�. We also tested the case where the rotation
was about the z axis. Additionally, in some tests we gave
both the gas and the star particle a velocity—subsonic and
supersonic—in an arbitrary direction to ensure that the
results were not changed when center of mass was moving.
And, of course, we varied the resolution, using a base grid of
323, up to 2563. In all cases we knew the desired magnitude
and direction of the specific angular momentum of the gas,
which allowed us to determine the accuracy of the specific
angular momentum accreted onto the star particle. For every
test we ran, the direction of the angular momentum differed
from the predicted direction by less than 10−4 degrees, and
the magnitude differed by at most ∼ 4.5 per cent. The
magnitude was always less the predicted value, but came
into < 1 per cent agreement as the resolution was increased
and as the velocity of the imposed bulk motion was dropped.
This is indicative of the fact that the small inaccuracy in the
magnitude of the angular momentum is due to the inherent
numerical errors, which cannot be avoided but that become
increasingly unimportant when using production run levels
of resolution.

The setup for the merger accretion test problem is as
follows: two star particles are placed in orbit within the
merging length scale so that they merge immediately, and
the pair is given a net velocity in an arbitrary non-grid-
axis direction (both sub- and supersonic velocities were
tested). The normal vector of the orbit of the two stars
points in a different non-grid-axis direction. To test if the
angular momentum cap was working we varied the star
particles’ radii. With physically reasonable radii the cap
is triggered, and with extremely large radii the cap is not
triggered so the sum of angular momentum vectors should
be returned. In every combination of star particle radii,
net velocity, resolution, mass ratio, and orbital angular
momentum direction, the direction and magnitude of the

resultant angular momentum agreed with the predicted
value to machine accuracy.

An additional, and important, test we performed was
the sensitivity of our results on the value used to cap the
magnitude of accreted angular momentum. The cap we
used was the simplest physically reasonable choice, and
was equivalent to our star particles having a moment of
inertia I? = M?R

2
?. This original cap ensured the angular

momentum of a star particle was always below the breakup
limit of Lbreakup, orig =

√
GM3

?R?. Because of the crudeness
of the approximation we wanted to make sure that our
results did not change if we used a different value. To do
so we re-ran a portion of both of our simulations using two
alternative caps. One alternative cap had no limit at all,
so its breakup rate was infinite. The other cap was 5 times
smaller than what we used in our production runs. This
second cap corresponds to the star particles having I? =
0.2M?R

2
?, which is approximately what one would expect

for an n = 3/2 polytrope, and therefore applies to fully
convective proto- and pre-main-sequence stars (Batygin &
Adams 2013). With this cap the star particles have a

breakup magnitude of Lbreakup, poly = 0.2
√
GM3

?R?.
Using both of these alternative angular momentum caps

we ran the hd simulation long enough for the most massive
star to reach nearly half a solar mass. In this time seven
star particles formed, five of which were above 0.05 M�. The
change in cap, as expected, changed the magnitude of star
particles’ angular momenta. However, it is reassuring that
the directions were not affected substantially. The angular
difference between most massive star particle’s angular
momentum vector using the original cap and polytrope cap
was on average 0.3◦ with a maximum of 0.5◦. For the same
star particle, when comparing the original cap to using no
cap the average difference rose to 2.8◦, with a maximum
of 4.0◦. The average angular discrepancy for all five star
particles with masses above 0.05 M� when using the original
cap and polytrope cap was 3.4◦, and when using the original
cap and no cap the average was 4.2◦.

Likewise, we re-ran the mhd simulation long enough
for the most massive star to reach more than half of its
final mass. In that time only one star particle formed. The
average angular difference between the star particle’s angu-
lar momentum vector using the original cap and polytrope
cap was 0.5◦ with a maximum of 1.1◦. The average and
maximum angular difference when using the original cap
and no cap were 2.2◦ and 5.2◦, respectively. It is clear from
these tests that our results and conclusions would not change
significantly if we used a different value for the cap, or even
no cap at all.
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